Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Cell Rep Med ; 3(10): 100780, 2022 10 18.
Article in English | MEDLINE | ID: covidwho-2267177

ABSTRACT

Protein nanoparticle scaffolds are increasingly used in next-generation vaccine designs, and several have established records of clinical safety and efficacy. Yet the rules for how immune responses specific to nanoparticle scaffolds affect the immunogenicity of displayed antigens have not been established. Here we define relationships between anti-scaffold and antigen-specific antibody responses elicited by protein nanoparticle immunogens. We report that dampening anti-scaffold responses by physical masking does not enhance antigen-specific antibody responses. In a series of immunogens that all use the same nanoparticle scaffold but display four different antigens, only HIV-1 envelope glycoprotein (Env) is subdominant to the scaffold. However, we also demonstrate that scaffold-specific antibody responses can competitively inhibit antigen-specific responses when the scaffold is provided in excess. Overall, our results suggest that anti-scaffold antibody responses are unlikely to suppress antigen-specific antibody responses for protein nanoparticle immunogens in which the antigen is immunodominant over the scaffold.


Subject(s)
HIV-1 , Nanoparticles , Vaccines , HIV Antibodies , Antibody Formation , Glycoproteins
2.
COVID ; 2(10):1379-1395, 2022.
Article in English | MDPI | ID: covidwho-2065739

ABSTRACT

COVID-19 and long COVID-19 vulnerabilities may be caused indirectly by albumin binding deficiency (ABD), which can be corrected by the correct administration of human serum albumin (HSA). The liver is the primary site of nutrient regulation and fluid volume maintenance;control of both is by changes to albumin concentration. In healthy subjects, the HSA lymphatic nutrient pump (HSALNP) ensures continual pumping of nutrients from the liver and that nutrients are appropriately distributed to organs. Nutrients are delivered to cells according to the availability of binding to HSA. The HSALNP, therefore, maintains the correct nutrient and colloidal pressure balance in all tissues independently. In unhealthy tissues, following COVID-19 infection, the passage of HSA/nutrients through the interstitial spaces and lymph will be impeded. Fluid therapy into the periphery leads to the dilution of essential nutrients attached to the protein carriers such as albumin. The levels of albumin being charged by the liver with nutrients is critical in maintaining immune stability by maintaining nutrient support and colloidal pressure of the cellular structures. The site of HSA binding by the liver is of great importance, and direct infusion of albumin into the hepatic portal vein is the most appropriate method of maintaining colloid pressure and cellular nutrient levels.

3.
Cell Rep ; 40(9): 111299, 2022 08 30.
Article in English | MEDLINE | ID: covidwho-1982704

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 has led to the development of a large number of vaccines, several of which are now approved for use in humans. Understanding vaccine-elicited antibody responses against emerging SARS-CoV-2 variants of concern (VOCs) in real time is key to inform public health policies. Serum neutralizing antibody titers are the current best correlate of protection from SARS-CoV-2 challenge in non-human primates and a key metric to understand immune evasion of VOCs. We report that vaccinated BALB/c mice do not recapitulate faithfully the breadth and potency of neutralizing antibody responses elicited by various vaccine platforms against VOCs, compared with non-human primates or humans, suggesting caution should be exercised when interpreting data obtained with this animal model.


Subject(s)
COVID-19 , Viral Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans , Mice , Mice, Inbred BALB C , Primates , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
4.
Sci Transl Med ; 14(646): eabn1252, 2022 05 25.
Article in English | MEDLINE | ID: covidwho-1784766

ABSTRACT

New variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to arise and prolong the coronavirus disease 2019 (COVID-19) pandemic. Here, we used a cell-free expression workflow to rapidly screen and optimize constructs containing multiple computationally designed miniprotein inhibitors of SARS-CoV-2. We found the broadest efficacy was achieved with a homotrimeric version of the 75-residue angiotensin-converting enzyme 2 (ACE2) mimic AHB2 (TRI2-2) designed to geometrically match the trimeric spike architecture. Consistent with the design model, in the cryo-electron microscopy structure TRI2-2 forms a tripod at the apex of the spike protein that engaged all three receptor binding domains simultaneously. TRI2-2 neutralized Omicron (B.1.1.529), Delta (B.1.617.2), and all other variants tested with greater potency than the monoclonal antibodies used clinically for the treatment of COVID-19. TRI2-2 also conferred prophylactic and therapeutic protection against SARS-CoV-2 challenge when administered intranasally in mice. Designed miniprotein receptor mimics geometrically arrayed to match pathogen receptor binding sites could be a widely applicable antiviral therapeutic strategy with advantages over antibodies in greater resistance to viral escape and antigenic drift, and advantages over native receptor traps in lower chances of autoimmune responses.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , Cryoelectron Microscopy , Humans , Mice , Spike Glycoprotein, Coronavirus
5.
Cell ; 184(21): 5432-5447.e16, 2021 10 14.
Article in English | MEDLINE | ID: covidwho-1454060

ABSTRACT

Understanding vaccine-elicited protection against SARS-CoV-2 variants and other sarbecoviruses is key for guiding public health policies. We show that a clinical stage multivalent SARS-CoV-2 spike receptor-binding domain nanoparticle (RBD-NP) vaccine protects mice from SARS-CoV-2 challenge after a single immunization, indicating a potential dose-sparing strategy. We benchmarked serum neutralizing activity elicited by RBD-NPs in non-human primates against a lead prefusion-stabilized SARS-CoV-2 spike (HexaPro) using a panel of circulating mutants. Polyclonal antibodies elicited by both vaccines are similarly resilient to many RBD residue substitutions tested, although mutations at and surrounding position 484 have negative consequences for neutralization. Mosaic and cocktail nanoparticle immunogens displaying multiple sarbecovirus RBDs elicit broad neutralizing activity in mice and protect mice against SARS-CoV challenge even in the absence of SARS-CoV RBD in the vaccine. This study provides proof of principle that multivalent sarbecovirus RBD-NPs induce heterotypic protection and motivates advancing such broadly protective sarbecovirus vaccines to the clinic.

6.
Front Immunol ; 12: 710263, 2021.
Article in English | MEDLINE | ID: covidwho-1315952

ABSTRACT

The unprecedented global demand for SARS-CoV-2 vaccines has demonstrated the need for highly effective vaccine candidates that are thermostable and amenable to large-scale manufacturing. Nanoparticle immunogens presenting the receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein (S) in repetitive arrays are being advanced as second-generation vaccine candidates, as they feature robust manufacturing characteristics and have shown promising immunogenicity in preclinical models. Here, we used previously reported deep mutational scanning (DMS) data to guide the design of stabilized variants of the RBD. The selected mutations fill a cavity in the RBD that has been identified as a linoleic acid binding pocket. Screening of several designs led to the selection of two lead candidates that expressed at higher yields than the wild-type RBD. These stabilized RBDs possess enhanced thermal stability and resistance to aggregation, particularly when incorporated into an icosahedral nanoparticle immunogen that maintained its integrity and antigenicity for 28 days at 35-40°C, while corresponding immunogens displaying the wild-type RBD experienced aggregation and loss of antigenicity. The stabilized immunogens preserved the potent immunogenicity of the original nanoparticle immunogen, which is currently being evaluated in a Phase I/II clinical trial. Our findings may improve the scalability and stability of RBD-based coronavirus vaccines in any format and more generally highlight the utility of comprehensive DMS data in guiding vaccine design.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Immunization Schedule , Immunogenicity, Vaccine , Mutation , Protein Domains/genetics , Protein Domains/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/virology , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Female , HEK293 Cells , Humans , Linoleic Acids , Mice , Mice, Inbred BALB C , Nanoparticles/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Treatment Outcome , Vero Cells
7.
Cell Host Microbe ; 29(7): 1151-1161.e5, 2021 07 14.
Article in English | MEDLINE | ID: covidwho-1283986

ABSTRACT

Despite the introduction of public health measures and spike protein-based vaccines to mitigate the COVID-19 pandemic, SARS-CoV-2 infections and deaths continue to have a global impact. Previously, we used a structural design approach to develop picomolar range miniproteins targeting the SARS-CoV-2 spike receptor-binding domain. Here, we investigated the capacity of modified versions of one lead miniprotein, LCB1, to protect against SARS-CoV-2-mediated lung disease in mice. Systemic administration of LCB1-Fc reduced viral burden, diminished immune cell infiltration and inflammation, and completely prevented lung disease and pathology. A single intranasal dose of LCB1v1.3 reduced SARS-CoV-2 infection in the lung when given as many as 5 days before or 2 days after virus inoculation. Importantly, LCB1v1.3 protected in vivo against a historical strain (WA1/2020), an emerging B.1.1.7 strain, and a strain encoding key E484K and N501Y spike protein substitutions. These data support development of LCB1v1.3 for prevention or treatment of SARS-CoV-2 infection.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Protein Binding , SARS-CoV-2/immunology , Administration, Intranasal , Angiotensin-Converting Enzyme 2 , Animals , COVID-19/immunology , COVID-19 Vaccines/administration & dosage , Disease Models, Animal , Female , Humans , Lung/immunology , Male , Mice , Mice, Inbred C57BL , Pandemics/prevention & control , Serine C-Palmitoyltransferase , Spike Glycoprotein, Coronavirus/chemistry , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL